Artificial prediction markets for online prediction of continuous variables

نویسنده

  • Fatemeh Jahedpari
چکیده

We propose the Artificial Continuous Prediction Market (ACPM) as a means to predict a continuous real value, by integrating a range of data sources and aggregating the results of different machine learning (ML) algorithms. ACPM adapts the concept of the (physical) prediction market to address the prediction of real values instead of discrete events. Each ACPM participant has a data source, a ML algorithm and a local decision-making procedure that determines what to bid on what value. The contributions of ACPM are: (i) adaptation to changes in data quality by the use of learning in: (a) the market, which weights each market participant to adjust the influence of each on the market prediction and (b) the participants, which use a Q-learning based trading strategy to incorporate the market prediction into their subsequent predictions, (ii) resilience to a changing population of lowand high-performing participants. We demonstrate the effectiveness of ACPM by application to an influenza-like illnesses data set, showing ACPM out-performs a range of well-known regression models and is resilient to variation in data source quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Composition Prediction of a Debutanizer Column Using Artificial Neural Network

The current method for composition measurement of an industrial distillation column includes an offline method, which is slow, tedious and could lead to inaccurate results. Among advantages of using online composition designed are to overcome the long time delay introduced by laboratory sampling and provide better estimation, which is suitable for online monitoring purposes. This paper pres...

متن کامل

RTDGPS Implementation by Online Prediction of GPS Position Components Error Using GA-ANN Model

If both Reference Station (RS) and navigational device in Differential Global Positioning System (DGPS) receive signals from the same satellite, RS Position Components Error (RPCE) can be used to compensate for navigational device error. This research used hybrid method for RPCE prediction which was collected by a low-cost GPS receiver. It is a combination of Genetic Algorithm (GA) computing an...

متن کامل

Artificial Prediction Markets for Online Prediction

In this dissertation, we propose an online learning technique to predict a value of a continuous variable by (i) integrating a set of data streams from heterogeneous sources with time varying compositions including (a) changing the quality of data streams, (b) addition or deletion of data streams (ii) integrating the results of several analysis algorithms for each data source when the most suit...

متن کامل

An introduction to artificial prediction markets for classification

Prediction markets are used in real life to predict outcomes of interest such as presidential elections. This paper presents a mathematical theory of artificial prediction markets for supervised learning of conditional probability estimators. The artificial prediction market is a novel method for fusing the prediction information of features or trained classifiers, where the fusion result is th...

متن کامل

Application of Linear Regression and Artificial NeuralNetwork for Broiler Chicken Growth Performance Prediction

This study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ANN) in broiler chicken. Artificial neural networks (ANNs) are powerful tools for modeling systems in a wide range of applications. The ANN model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1508.02681  شماره 

صفحات  -

تاریخ انتشار 2016